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SURJECTIVITY OF THE TOTAL CLIFFORD INVARIANT

AND BRAUER DIMENSION

ASHER AUEL

Abstract. A celebrated theorem of Merkurjev—that the 2-torsion of the Brauer group is
represented by Clifford algebras of quadratic forms—is in general false when the base is no
longer a field. The first counterexamples, when the base is among certain arithmetically subtle
hyperelliptic curves over local fields, were constructed by Parimala, Scharlau, and Sridharan.
We prove that considering Clifford algebras of all line bundle-valued quadratic forms, such
counterexamples disappear and we recover Merkurjev’s theorem in these cases: for any smooth
curve over a local field or any smooth surface over a finite field, the 2-torsion of the Brauer
group is always represented by Clifford algebras of line bundle-valued quadratic forms.

Introduction

A consequence of Merkurjev’s celebrated result [Mer1]—settling the degree 2 case of the
Milnor conjecture—is that every 2-torsion Brauer class over a field of characteristic 6= 2 is
represented by the Clifford algebra of a quadratic form. There are many alternate proofs of
Merkurjev’s theorem [Ara], [Mer2], [Wad], [EKM, VIII], and it retains its status as one of the
great breakthroughs in the theory of quadratic forms in the second half of the 20th century.

There have been many investigations into the validity of aspects of the Milnor conjecture over
more general rings. For example, see [Gui, §3], [EVMS], [Hoo], and [KMS], [Ker] for a Milnor
K-theoretic perspective, [PS1], [Mor], and [Gil] for a Witt group perspective, and [Auel3] for
a survey of results. In this context, Alex Hahn asked if there exists a commutative ring R
over which the analogue of Merkurjev’s theorem doesn’t hold, i.e., 2Br(R) is not represented
by Clifford algebras of regular quadratic forms over R. The surprising results of Parimala,
Scharlau, and Sridharan [PSch], [PS1], [PS1] show that for a smooth complete hyperelliptic
curveX with a rational point over a local field of characteristic 6= 2, the analogue of Merkurjev’s
theorem over X holds if and only if X has a rational theta characteristic (which can fail to
happen). These examples are also used to construct affine schemes over which Merkurjev’s
theorem does not hold, thus answering Hahn’s original question.

In this work we show that even when Brauer classes of period 2 over a given scheme X cannot
be represented by Clifford algebras of regular quadratic forms over X, they may be represented
by Clifford algebras of regular line bundle-valued quadratic forms. Let Wtot(X) be the total
Witt group of line bundle-valued quadratic forms (see §2.1 for definitions) and let I2tot(X) be
the subgroup of line bundle-valued quadratic forms of even rank and trivial discriminant. We
construct (in §2.4) a natural group homomorphism e2 : I2tot(X) → 2Br(X) with values in the
2-torsion of the Brauer group of X, generalizing the classical Clifford invariant, and which we
call the total Clifford invariant. A succinct consequence of our main result is the following.

Theorem A. Let X be a smooth curve over a local field of characteristic 6= 2 or a smooth
surface over a finite field of odd characteristic. Then the total Clifford invariant

e2 : I2tot(X) → 2Br(X)

is surjective. In other words, every 2-torsion Brauer class on X is represented by the Clifford
algebra of a regular line bundle-valued quadratic form on X.
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In the proof (see §3), we apply results of Saltman [Sal2] and Lieblich [Lie2] on the Brauer
dimension of function fields of curves over local fields and surfaces over finite fields, respec-
tively. Together with a purity result for division algebras on surfaces (Theorem 3.6), we reduce
the problem to one concerning Azumaya algebras of degree dividing 4 and index dividing
2. Then we generalize results of Knus, Ojanguren, Parimala, Paques, and Sridharan [KOS],
[KP], [Knu1], [KPS1], [KPS2], and [BK] (also see [KMRT, IV §15]), on the exceptional iso-
morphisms of Dynkin diagrams A2

1 = D2 and A3 = D3, which provide beautiful constructions
of line bundle-valued quadratic forms with specified even Clifford algebras. In fact, our main
result (Theorem 3.5) applies to any regular integral scheme X satisfying purity and Brauer
dimension bounded by 2 for algebras of period 2 over the function field.

The verification that the total Clifford invariant is well defined is no small task, and occupies
the bulk of §1–2. The majority of the work goes into establishing two fundamental algebraic
structural results: the Brauer triviality of the even Clifford algebra of a line bundle-valued
metabolic form (Theorem 1.7), generalizing the main result of [KO]; and a formula to compute
the even Clifford algebras and bimodules of orthogonal sums (Theorem 1.8) leading to a gen-
eralization of the classical fundamental relation in the Brauer group (Theorem 2.6). To this
end, we use a new direct tensorial construction of the even Clifford algebra and bimodule (see
§1.2), which offers novel universal properties (Propositions 1.1 and 1.4) useful in establishing
these results. These structural results for line bundle-valued forms are new and are useful
in a variety of contexts. In particular, they go beyond the author’s previous cohomological
construction [Auel1] of Clifford-type invariants.

History. The notion of a line bundle-valued quadratic form on X appeared in many different
contexts in the early 1970s. Geyer–Harder–Knebusch–Scharlau [GHKS] introduced the notion
of symmetric bilinear forms with values in the module of Kähler differentials over a global
function field. This notion enables a consistent choice of local traces in order to generalize
residue theorems to nonrational function fields. For a smooth complete algebraic curve X,
Mumford [Mum] introduced the notion of locally free OX -modules with pairings taking values in
the sheaf of differentials ωX to study theta characteristics. Kanzaki [Kan] introduced the notion
of a Witt group of quadratic forms with values in an invertible module over a commutative
ring. Saltman [Sal1, Thm. 4.2] showed that involutions on Azumaya algebras naturally lead
to the consideration of line bundle-valued bilinear forms.

In his thesis, Bichsel [Bic] (reported in [BK]) constructed an even Clifford algebra of a line
bundle-valued quadratic form. This was later used in [PS2], [Bal], and [Voi]. Kapranov [Kap,
§4.1] constructed a homogeneous Clifford algebra of a quadratic form—which in hindsight is
related to the generalized Clifford algebra of [BK] or the graded Clifford algebra of [CvO]—to
study the derived category of projective quadrics and quadric fibrations. This was further
developed by Kuznetsov [Kuz]. With respect to Clifford algebras, line bundle-valued quadratic
forms behave much like Azumaya algebras with orthogonal involutions, which do not enjoy a
“full” Clifford algebra, only an even part together with a bimodule. In particular, line bundle-
valued quadratic forms have no Clifford invariant in the classical sense. The construction of
secondary invariants in étale cohomology capturing the even Clifford algebra of a line bundle-
valued quadratic form with fixed discriminant appeared in [Auel1]. In the present work, we
develop a purely algebraic Clifford invariant for line bundle-valued quadratic forms with trivial
discriminant, taking values in the 2-torsion of the Brauer group.
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at ETH Zürich also proved to be very fruitful. The author would also personally like to thank B.

Calmès, T. Chinburg, M. Knus, R. Parimala, D. Saltman, and V. Suresh for many useful conversations

and much encouragement. Author partially supported by National Science Foundation MSPRF grant

DMS-0903039 and an NSA Young Investigator Grant.



SURJECTIVITY OF THE TOTAL CLIFFORD INVARIANT 3

1. Line bundle-valued quadratic forms and even Clifford algebras

Let X be a separated noetherian scheme. By a vector bundle, we mean a locally free
OX-module of constant finite rank. Fix a line bundle L on X, i.e., an invertible OX-module.

1.1. Line bundle-valued quadratic forms. A (line bundle-valued) symmetric bilinear form
on X is a triple (E , b,L ), where E is a vector bundle on X and b : S2E → L is an OX-module
morphism. A (line bundle-valued) quadratic form on X is a triple (E , q,L ), where E is a
vector bundle on X and q : E → L is an OX -homogeneous morphism of degree two such that
the associated morphism bq : S

2E → L defined on sections by bq(vw) = q(v+w)− q(v)− q(w)
is a symmetric bilinear form. We will mostly dispense with the title “line bundle-valued.” The
rank of (E , q,L ) is the rank of E .

A symmetric bilinear form (E , b,L ) is regular if the canonical adjoint ψb : E → Hom(E ,L )
is an isomorphism. A quadratic form q is regular if bq is regular. If 2 is assumed invertible on
X, then we can pass back and forth between quadratic and symmetric bilinear forms on X.

A similarity transformation between symmetric bilinear forms (E , b,L ) and (E ′, b′,L ′) or
quadratic forms (E , q,L ) and (E ′, q′,L ′) is a pair (ϕ, λ) consisting of OX -module isomorphisms
ϕ : E → E ′ and λ : L → L ′ such that b′(ϕ(v), ϕ(w)) = λ ◦ b(v,w) or q′(ϕ(v)) = λ ◦ q(v) on
sections, respectively. A similarity transformation (ϕ, λ) is an isometry if L = L ′ and λ is
the identity map.

Denote by GO(E , q,L ) (resp. O(E , q,L )) the presheaf, on the large fppf site Xfppf , of
similitudes (resp. isometries) of a regular quadratic form (E , q,L ). In fact, this is a sheaf and
is representable by a smooth affine reductive group scheme over X; see [DG, II.1.2.6, III.5.2.3]).
Here we consider reductive group schemes whose fibers are not necessarily geometrically in-
tegral, in contrast to [SGA3, XIX.2]. In particular, the pointed nonabelian cohomology set
H1

fppf(X,GO(E , q,L )) is in bijection with the similarity classes of regular line bundle-valued

quadratic forms with the same rank as (E , q,L ); see [Auel1, Prop. 1.2]. If n is even or 2 is
invertible on X, then the fppf site can be replaced by the étale site.

Define the projective similarity class of a quadratic form (E , q,L ) to be the set of similarity
classes of quadratic forms (N ⊗ E , qN ⊗ q,N ⊗2 ⊗ L ) ranging over all regular bilinear forms
(N , qN ,N ⊗2) of rank 1 on X. In [BC], this is referred to as a lax-similarity class. In
their notation, a quadratic alignment A = (N , φ) between line bundles L and L ′ consists
of a line bundle N and an OX -module isomorphism φ : N ⊗2 ⊗ L → L ′. A quadratic
alignment induces an equivalence A	 between categories of L -valued and L ′-valued quadratic
forms (in particular, an isomorphism A	 :W (X,L ) →W (X,L ′) of Witt groups) defined by
A	 : (E , q,L ) 7→ (N ⊗ E , φ ◦ (qN ⊗ q),L ′), where qN : N → N ⊗2 is the canonical squaring
form.

1.2. Even Clifford algebra. In his thesis, Bichsel [Bic] constructs an even Clifford algebra
of a line bundle-valued quadratic form on an affine scheme. Alternate constructions are given
in [BK], [CvO], and [PS2, §4], which are all detailed in [Auel1, §1.8]. Inspired by [KMRT,
II Lemma 8.1, §9], we now give a direct tensorial construction. Let (E , q,L ) be a line bundle-
valued quadratic form on X

Define ideals J1 and J2 of the tensor algebra T (E ⊗ E ⊗ L ∨) to be locally generated by

(1) v ⊗ v ⊗ f − f(q(v)) · 1 and u⊗ v ⊗ f ⊗ v ⊗ w ⊗ g − f(q(v))u ⊗ w ⊗ g,

respectively, for sections u, v, w of E and f, g of L ∨. We define

(2) C0(E , q,L ) = T (E ⊗ E ⊗ L ∨)/(J1 + J2)

together with the canonically induced morphism of OX-modules

(3) i : E ⊗ E ⊗ L ∨ → C0(E , q,L ),

which factors through the degree one elements of the tensor algebra.
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Writing the rank as n = 2m or n = 2m+ 1, there is a filtration by OX -modules

OX = F0 ⊂ F2 ⊂ · · · ⊂ F2m = C0(E , q,L ),

where F2i is the image of the truncated tensor algebra T≤i(E ⊗ E ⊗ L ∨) in C0(E , q,L ),
for each 0 ≤ i ≤ m. As in [Knu2, IV §1.6], this filtration has associated graded pieces

F2i/F2(i−1)
∼=

∧2iE ⊗ (L ∨)⊗i. In particular, C0(E , q,L ) is a locally free OX-algebra of rank

2n−1. By its tensorial construction, the even Clifford algebra has the following.

Proposition 1.1 (Universal Property of the even Clifford algebra). Given an OX-algebra A
and an OX-module morphism j : E ⊗ E ⊗ L ∨ → A such that

j(v ⊗ v ⊗ f) = f(q(v)) · 1 and j(u⊗ v ⊗ f) · j(v ⊗ w ⊗ g) = f(q(v)) j(u ⊗ w ⊗ g),

then there exists a unique OX-algebra homomorphism ψ : C0(E , q,L ) → A satisfying j = ψ◦i.

A similar universal property for algebras with involution over a field is stated in [Mah, §3].
The even Clifford algebra has the following additional properties.

Proposition 1.2. Let (E , q,L ) be a regular quadratic form of rank n on a scheme X. Write
n = 2m or n = 2m+ 1.

a) If n is odd, C0(E , q,L ) is a central OX-algebra. If n is even, the center Z (E , q,L ) of
C0(E , q,L ) is an étale quadratic OX -algebra.

b) If n is odd, C0(E , q,L ) is an Azumaya OX -algebra of degree 2m. If n is even, C0(E , q,L )
is an Azumaya Z (E , q,L )-algebra of rank 2m−1

c) The canonical OX-module morphism i : E ⊗E ⊗L ∨ → C0(E , q,L ) is a locally split em-
bedding and there exists a unique canonical involution τ0 : C0(E , q,L ) → C0(E , q,L )op

satisfying τ0(i(v ⊗ w ⊗ f)) = i(w ⊗ v ⊗ f) for sections v,w of E and f of L ∨.
d) Any similarity (ϕ, λ) : (E , q,L ) → (E ′, q′,L ′) induces an OX -algebra isomorphism

C0(ϕ, λ) : C0(E , q,L ) → C0(E
′, q′,L ′)

satisfying i(v)⊗ i(w)⊗ f 7→ i(ϕ(v)) ⊗ i(ϕ(w))⊗ f ◦ λ−1 for sections v,w of E and f of
L ∨.

e) Any quadratic alignment A = (N , φ), with φ : N ⊗2⊗L → L ′, induces an OX-algebra
isomorphism

C0(A
	) : C0(A

	(E , q,L )) → C0(E , q,L )

satisfying i(a⊗ v)⊗ i(b⊗ w) ⊗ f 7→ i(v) ⊗ i(w) ⊗ φ′(a⊗ b⊗ f), for sections a, b of N ,
v,w of E , and f of L ′∨, where φ′ : N ⊗2 ⊗ L ′∨ → L ∨ is the isomorphism canonically
induced from φ.

f) For any morphism of schemes p : X ′ → X, there is a canonical OX-module isomorphism

C0(p
∗(E , q,L )) → p∗C0(E , q,L ).

Proof. Properties a and b are étale local and hence follow from the corresponding properties
of the classical even Clifford algebra (cf. [Knu2, IV Thm. 2.2.3, Prop. 3.2.4]), also see [BK,
§3]. Properties c, d, and e are all consequence of the universal property. Property f is a direct
consequence of the tensorial construction. �

Definition 1.3. Let (E , q,L ) be a quadratic form of even rank on X. We call f : Z =
SpecZ (E , q,L ) → X the discriminant cover of (E , q,L ). If (E , q,L ) is regular, then f :
Z → X is étale quadratic.
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1.3. Clifford bimodule. As in the case of central simple algebras with orthogonal involution,
line bundle-valued quadratic forms do not generally enjoy a “full” Clifford algebra, of which
the even Clifford algebra is the even degree part. Inspired by [KMRT, II §9], we can directly
define the Clifford bimodule C1(E , q,L ) of a quadratic form (E , q,L ), corresponding to the
“odd” part of the classical Clifford algebra.

The OX -module E ⊗ T (E ⊗ E ⊗L ∨) has a natural right T (E ⊗ E ⊗L ∨)-module structure
denoted by ⊗. The OX-bilinear map ∗ : (E ⊗ E ⊗ L ∨)× E → E ⊗ (E ⊗ E ⊗ L ∨) defined by

(u⊗ v ⊗ f) ∗ w = u⊗ (v ⊗ w ⊗ f)

for sections u, v, w of E and f of L ∨, induces a left T (E ⊗ E ⊗ L ∨)-module structure ∗ on
E ⊗T (E ⊗E ⊗L ∨), uniquely defined so that it commutes with the natural right T (E ⊗E ⊗L ∨)-
module structure. We define

(4) C1(E , q,L ) = E ⊗ T (E ⊗ E ⊗ L ∨)/(E ⊗ J1 + J1 ∗ E )

together with the canonically induced morphism of OX-modules

(5) i : E → C1(E , q,L ),

which is a locally split embedding. One immediately checks that E ⊗ J2 ⊂ J1 ∗ E and
J2 ∗ E ⊂ E ⊗ J1, hence C1(E , q,L ) inherits a C0(E , q,L )-bimodule structure. Denote the
right and left C0(E , q,L )-module structures by · and ∗, respectively.

Writing the rank as n = 2m or n = 2m+ 1, there is a filtration

E = F1 ⊂ F3 ⊂ · · · ⊂ F2m+1 = C1(E , q,L ),

where F2i+1 is the image of the truncation E ⊗ T≤i(E ⊗ E ⊗ L ∨) in C1(E , q,L ), for each

0 ≤ i ≤ m. This filtration has associated graded pieces F2i+1/F2i−1
∼=

∧2i+1E ⊗ (L ∨)⊗i. In
particular, C1(E , q,L ) is a locally free OX-module of rank 2n−1. By its tensorial construction,
the Clifford bimodule has the following.

Proposition 1.4 (Universal Property of the Clifford bimodule). Given a C0(E , q,L )-bimodule
B (with right and left actions · and ∗) and an OX-module morphism j : E → B such that

j(u) · i(v ⊗ w ⊗ f) = i(u⊗ v ⊗ f) ∗ j(w),

for sections u, v, w of E and f of L ∨, there exists a unique C0(E , q,L )-bimodule morphism
ψ : C1(E , q,L ) → B satisfying j = ψ ◦ i.

The Clifford bimodule has the following additional properties.

Proposition 1.5. Let (E , q,L ) be a regular quadratic form on a scheme X.

a) The Clifford bimodule C1(E , q,L ) is invertible as a (left or right) C0(E , q,L )-module.

b) If n is even, then the action of Z (E , q,L ) on C1(E , q,L ) satisfies x·z = ι(z)∗x for sec-
tions z of Z (E , q,L ) and x of C1(E , q,L ), where ι is the nontrivial OX-automorphism
of Z (E , q,L ).

c) There is a canonical isomorphism

m : C1(E , q,L )⊗C0(E ,q,L ) C1(E , q,L ) → C0(E , q,L )⊗OX
L

of C0(E , q,L )-bimodules satisfying m(i(v) ⊗ i(v)) = 1⊗ q(v) for a section v of E .

d) Any similarity transformation (ϕ, λ) : (E , q,L ) → (E ′, q′,L ′) induces an OX-module
isomorphism

C1(ϕ, λ) : C1(E , q,L ) → C1(E
′, q′,L ′).

that is C0(ϕ, λ)-semilinear with respect to the bimodule structure.
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e) Any quadratic alignment A = (N , φ), with φ : N ⊗2⊗L → L ′, induces an OX-module
isomorphism

C1(A
	) : C1(A

	(E , q,L )) → N ⊗ C1(E , q,L )

that is C0(A
	)-semilinear with respect to the bimodule structure.

f) For any morphism of schemes p : X ′ → X, there is a canonical OX-module isomorphism

C1(p
∗(E , q,L )) → p∗C1(E , q,L ).

Proof. For simplicity, we write C0 = C0(E , q,L ) and C1 = C1(E , q,L ). For a, since q is
fiberwise nonzero, Zariski locally there exists a line subbundle N ⊂ E such that q|N is
regular. Then as in the classical case (see [Knu2, IV Prop. 7.5.2]), N locally generates C1 over
C0 as a right or left module.

For b, this is a local question and hence follows from [Knu2, IV Prop. 4.3.1(4)]. For c, we
will define a C0(E , q,L )-bimodule morphism ψm : C1(E , q,L ) → HomC0

(C1,C0 ⊗L ), where
HomC0

denotes the sheaf of right C0-module homomorphisms (here L is acted trivially on).
Then m will be the C0-bimodule map with adjoint ψm. To this end, for each section v of E ,
we define a section mv of HomC0

(C1,C0 ⊗L ) ∼= HomC0
(C1 ⊗L ∨ ⊗L ,C0 ⊗L ) by applying

the universal property to the map w ⊗ f ⊗ l 7→ i(v ⊗ w ⊗ f) ⊗ l for a section w of E , f of
L ∨, and l of E . Then applying the universal property to the map defined by v 7→ mv, yields
the required ψm. Finally, m is an isomorphism by a, since it’s a nontrivial map of invertible
C0-bimodules.

Properties d and e are consequence of the universal property (cf. [Bic, Prop. 2.6] and [BK,
Lemma 3.3]). Property f is a direct consequence of the tensorial construction. �

1.4. Metabolic forms. A quadratic form (E , q,L ) of rank n = 2m on X is metabolic if there
exists a locally direct summand F → E of rank m such that the restriction of q to F is zero.
Any choice of such P is a lagrangian. The class of hyperbolic forms is the main example.

Example 1.6. For any vector bundle P of rank m and any line bundle L the (L -valued)
hyperbolic quadratic form HL (P) has underlying OX-module Hom(P,L )⊕P and is given
by t+ v 7→ t(v) on sections. Here, P and Hom(P,L ) are lagrangians.

We now proceed to compute the even Clifford algebra and Clifford bimodule of a hyperbolic
form, which will be necessary for us later. Given an OX-module morphism t : P → L , for
each i ≥ 0 we define

d
(i)
t :

∧i+1P →
∧iP ⊗ L

inductively by d
(i)
t (v ∧ x) = x ⊗ t(v) + x ∧ d

(i−1)
t (x) for sections v of P and x of

∧iP, cf.

[Auel2, §2]. Under the identification
∧0P = OX , we set d

(0)
t = t. Defining

∧+
L P =

⌊m/2⌋
⊕

i=0

∧2iP ⊗ (L ∨)⊗i,
∧−

L P =

⌊(m−1)/2⌋
⊕

i=0

∧2i+1P ⊗ (L ∨)⊗i.

there are induced OX-module morphisms

d+t :
∧+

L P →
∧−

L P, d−t :
∧−

L P →
∧+

L P ⊗ L .

Also, for each global section v of P, left wedging defines OX-module morphisms

l+v :
∧+

L P →
∧−

L P, l−v :
∧−

L P →
∧+

L P ⊗ L .

One immediately checks that the maps

HL (P)⊗HL (P)⊗ L ∨ → End
(
∧+

L P
)

× End
(
∧−

L P
)

(t+ v)⊗ (s+ w)⊗ f 7→ (id⊗ f)(d−t ◦ d+s + d−t ◦ l+w + l−v ◦ d+s + l−v ◦ l+w)

+ (d+t ⊗ f ◦ d−s + d+t ⊗ f ◦ l−w + l+v ⊗ f ◦ d−s + l+v ⊗ f ◦ l−w)
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and

HL (P) → Hom
(
∧+

L P,
∧−

L P
)

⊕ Hom
(
∧−

L P,
∧+

L P
)

⊗ L

t+ v 7→ (d+t + l+v ) + (d−t + l−v ).

satisfy the universal properties of the even Clifford algebra and Clifford bimodule, hence induce
a canonical OX-algebra morphism

Φ0 : C0(HL (P)) → End
(
∧+

L P
)

× End
(
∧−

L P
)

and a canonical OX-module morphism

Φ1 : C1(HL (P)) → Hom
(
∧+

L P,
∧−

L P
)

⊕ Hom
(
∧−

L P,
∧+

L P
)

⊗ L

transporting, via the morphism Φ0, the C0(HL (P))-bimodule structure to the evident compo-
sition End(

∧+
L P)×End(

∧−
L P)-bimodule structure. Zariski locally, Φ0 and Φ1 agree with the

restriction of the classical isomorphism C (HOX
(P)) ∼= End(

∧

P) (see [Knu2, IV Prop. 2.1.1])
to the even and odd components of the Clifford algebra, hence Φ0 and Φ1 are isomorphisms.

We point out that Z (HL (P)) ∼= OX × OX is the split étale quadratic algebra.

The formula for the even Clifford algebra of a hyperbolic form given in Example 1.6 does
not persist to (nonsplit) metabolic quadratic forms, a phenomenon already apparent when
L = OX ; see [KO]. However, the main result of this section is that C0 is still a product of
split Azumaya algebras.

Theorem 1.7. Let (E , q,L ) be a metabolic quadratic form of rank n = 2m on a scheme X.
Any choice of lagrangian F → E induces a natural choice of vector bundles M+ and M− of
rank 2m−1, an OX -algebra isomorphism

Φ0 : C0(E , q,L ) ∼= End(M+)× End(M−),

and an OX-module isomorphism

Φ1 : C1(E , q,L ) ∼= Hom(M+,M−)⊕ Hom(M−,M+)⊗ L

transporting, via Φ0, the C0(E , q,L )-bimodule structure to the evident composition End(M+)×
End(M−)-bimodule structure.

Proof. We generalize the proof from Knus–Ojanguren [KO] to the line bundle-valued setting.
On the category of vector bundles, write (−)∨L for the functor Hom(−,L ) and canL for the
canonical isomorphism of functors id → ((−)∨L )∨L .

Let P be a vector bundle of rank m ≥ 1 and HL (P) be the corresponding L -valued
hyperbolic form. Denote by γ0 : O

(

HL (P)
)

→ AutOX -alg

(

C0(HL (P))
)

the homomorphism
induced by Proposition 1.2d. Restricting γ0 to the center yields the Dickson homomorphism
∆ : O

(

HL (P)
)

→ AutOX -alg

(

Z (HL (P))
)

= Z/2Z of group schemes, cf. [Auel1, §1.9].

Its kernel is the special orthogonal group scheme SO
(

HL (P)
)

. Under the identification

C0(HL (P)) = End
(
∧+

L P
)

× End
(
∧−

L P
)

of Example 1.6, we have that γ0 restricts to a
homomorphism

γ0 : SO
(

HL (P)
)

→ AutZ -alg

(

C0(HL (P))
)

∼= PGL
(
∧+

L P
)

×PGL
(
∧−

L P
)

.

Similarly, denote by γ1 : O
(

HL (P)
)

→ AutOX−mod

(

C1(HL (P))
)

the homomorphism
induced by Proposition 1.5d. Under the identification of C1(HL (P)) with the vector bundle
Hom

(
∧+

L P,
∧−

L P
)

⊕ Hom
(
∧−

L P,
∧+

L P
)

⊗ L of Example 1.6, we have that γ1 restricts
to a homomorphism

γ1 : SO
(

HL (P)
)

→ AutZ

(

C1(HL (P))
)

∼= GL(H +)×GL(H −)

where we write H + = Hom
(
∧+

L P,
∧−

L P
)

and H − = Hom
(
∧−

L P,
∧+

L P ⊗ L
)

.
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The parabolic subgroup SO
(

HL (P),P
)

⊂ SO
(

HL (P)
)

of isometries preserving P has
the following block description

SO
(

HL (P),P
)

(U) =

{(

(α∨L )−1 β
0 α

)

: β∨L canL α is alternating

}

where for each U → X and each α ∈ Hom(P|U ,P|U ) and β ∈ Hom(P|U ,P|∨LU ), we consider

β∨L canL α : PU → P|∨LU as the adjoint of an L |U -valued bilinear form.
We use an L -valued version of Bourbaki’s tensor operations for even Clifford algebras, cf.

[Bal, Thm. 2.2]. In particular, under the canonical identifications C0(P, 0,L ) =
∧+

L P and

C1(P, 0,L ) =
∧−

L P, there exist homomorphisms of sheaves of groups

Ψ± : Hom
(
∧2P,L

)

→ GL
(
∧±

L P
)

satisfying the following properties:

(6) Ψ±(b ◦ ∧2ϕ) = ∧±
L (ϕ)−1 Ψ±(b) ∧±

L (ϕ)

for each alternating form b :
∧2P → L and each ϕ ∈ GL(P); and

(7) ψb = ψb′ ⇒ Ψ±(b) = Ψ±(b′)

where ψb : P → P∨L is the adjoint map to the alternating form b :
∧2P → L . By (7),

we can write Ψ±(ψ) in place of Ψ±(b) for any OX -module morphism ψ : P → P∨L that is

adjoint to an alternating form b :
∧2P → L .

With this in hand, we define maps

ρ± : SO
(

HL (P),P
)

→ GL
(
∧±

L P
)

(

(α∨L )−1 β
0 α

)

7→ ∧±
L (α)Ψ±(α∨L β)

which we now proceed to verify are well defined homomorphisms. Consider the Levi decom-
position SO

(

HL (P),P
)

= MN = NM given explicitly by
(

(α∨L )−1 β
0 α

)

=

(

(α∨L )−1 0
0 α

)(

1 α∨L β
0 1

)

=

(

1 βα−1

0 1

)(

(α∨L )−1 0
0 α

)

and note that α∨L β (being the transpose of β∨L canL α) is adjoint to an alternating form, say

b :
∧2P → L . Then βα−1 is adjoint to the alternating form b ◦ ∧2α−1, since we can write

βα−1 = (α−1)∨L (α∨L β)α−1. Hence by (6), ρ± is also given by Ψ±(βα−1)∧±
L (α). Since ρ± is

based on, and independent of, the Levi decomposition order, it is a well defined group scheme
homomorphism.

Denoting by ρ0 = ρ+ × ρ− : SO
(

HL (P),P
)

→ GL
(
∧+

L P
)

×GL
(
∧−

L P
)

, consider the
diagram

SO
(

HL (P),P
)

ρ0
��

// SO
(

HL (P)
)

γ0
��

GL
(
∧+

L P
)

×GL
(
∧−

L P
)

// PGL
(
∧+

L P
)

×PGL
(
∧−

L P
)

of group schemes, where the horizontal arrows are the obvious ones. The fiber of this diagram
over any point of X is isomorphic to the restriction, to the special orthogonal group and even
Clifford algebra, of the corresponding commutative diagram of orthogonal groups and (full)
Clifford algebras in [KO, Thm.] (cf. [Knu2, IV Prop. 2.4.2]). Hence the diagram commutes
over X.

We now consider the induced commutative diagram of pointed nonabelian cohomology sets:
H1

ét

(

X,SO(HL (P))) is in bijection with the set of similarity classes of L -valued quadratic
forms (E , q,L ) of rank 2m together with an orientation isomorphism ζ : Z (E , q,L ) ∼= OX ×
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OX (cf. [Auel1, Prop. 1.15]); H1
ét(X,SO(HL (P),P)) is in bijection with the set of similarity

classes of metabolic L -valued quadratic forms (E , q,L ) of rank n = 2m together with a choice
of lagrangian; H1

ét(X,GL(
∧±

L P)) is in bijection with the set of isomorphism classes of vector

bundles M± of rank 2m−1; H1
ét(X,PGL(

∧±
L P)) is in bijection with the set of isomorphism

classes of Azumaya algebras of degree 2m−1; the induced map

H1
ét

(

X,SO
(

HL (P),P
))

→ H1
ét

(

X,SO
(

HL (P)
))

replaces the choice of lagrangian by the orientation it canonically induces (cf. [Auel1, Lemma 1.14]);
the map induced by γ0 takes an oriented quadratic form to its even Clifford algebra together
with the splitting of its center induced by the orientation; the map induced by ρ0 takes a
metabolic quadratic form of rank n = 2m together with a choice of lagrangian to a pair of
vector bundles M+ and M− of rank 2m−1; the induced map

H1
ét

(

X,GL
(
∧±

L P
))

→ H1
ét

(

X,PGL
(
∧±

L P
))

takes a vector bundle M± to the Azumaya algebra End(M±). Chasing the diagram around
shows that if (E , q,L ) is a metabolic quadratic form of rank 2m, then C0(E , b,L ) is isomorphic
to End(M+)× End(M−) for vector bundles M+ and M− of rank 2m−1 on X.

To identify the Clifford bimodule, consider the diagram

SO
(

HL (P),P
)

ρ0
��

// SO
(

HL (P)
)

γ1

��

GL
(
∧+

L P
)

×GL
(
∧−

L P
) c // GL(H +)×GL(H −)

of group schemes, where the top horizontal arrow is the canonical one, and c is the evident
homomorphism defined by compositions. The fiber of this diagram over any point of X is
isomorphic to the restriction, to the special orthogonal group and odd part of the Clifford
algebra, of the corresponding commutative diagram of orthogonal groups and (full) Clifford
algebras in [KO, Thm.] (cf. [Knu2, IV Prop. 2.4.2]). Hence the diagram commutes over X.

As above, we consider the induced commutative diagram of pointed nonabelian cohomol-
ogy sets: the map induced by γ1 takes an oriented quadratic form to its Clifford bimodule,
together with a direct sum decomposition stable under the action of the center; the map in-
duced by c takes a pair of vector bundles M+ and M− of rank 2m−1 to Hom(M+,M−) ⊕
Hom(M−,M+ ⊗L ). Chasing the diagram around gives the stated identification. The com-
patibility of the bimodule structures can then be checked locally. �

1.5. Orthogonal sums. We will also need an orthogonal sum formula for the even Clifford
algebra. Let (E , q,L ) and (E ′, q′,L ) be quadratic forms over a scheme X and denote by

i0 : E ⊗ E ⊗ L ∨ → C0(q), i′0 : E ′ ⊗ E ′ ⊗ L ∨ → C0(q
′),

i1 : E → C1(q), i′1 : E ′ → C1(q
′),

the canonical OX-module morphisms (3) and (5), respectively.
We define an OX -algebra structure on C0(q)⊗ C0(q

′)⊕ C1(q)⊗ C1(q
′)⊗ L ∨ as follows: by

multiplication in C0 (for products between elements of the first summand), by the C0-bimodule
action C1 (between elements of the first and second summands), and by the multiplication map
m : C1⊗C1 → C0⊗L in Proposition 1.5c (between elements of the second summand) followed
by evaluation with L ∨. One can check that the map

(E ⊕ E ′)⊗ (E ⊕ E ′)⊗ L ∨ → C0(q)⊗ C0(q
′)⊕ C1(q)⊗ C1(q

′)⊗ L ∨

(v + v′)⊗ (w + w′)⊗ f 7→
(

i0(v ⊗ w ⊗ f)⊗ 1 + 1⊗ i′0(v
′ ⊗ w′ ⊗ f)

)

+
(

i1(v)⊗ i′1(w
′)⊗ f − i1(w)⊗ i′1(v

′)⊗ f
)
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satisfies the universal property of the even Clifford algebra, hence induces an OX -algebra
morphism C0(q ⊥ q′) → C0(q)⊗C0(q

′)⊕C1(q)⊗ C1(q
′)⊗L ∨. Via this morphism, there is an

induced C0(q ⊥ q′)-bimodule structure on C0(q) ⊗ C1(q
′)⊕ C1(q)⊗ C0(q

′), and one can check
that the map

E ⊕ E ′ → C0(q)⊗ C1(q
′)⊕ C1(q)⊗ C0(q

′)

v + v′ 7→ i1(v)⊗ 1 + 1⊗ i′1(v
′)

satisfies the universal property of the Clifford bimodule.

Theorem 1.8. Let (E , q,L ) and (E ′, q′,L ) be quadratic forms over a scheme X. Then the
OX-algebra morphism

(8) C0(q ⊥ q′) → C0(q)⊗ C0(q
′)⊕ C1(q)⊗ C1(q

′)⊗ L ∨

and the C0(q ⊥ q′)-bimodule morphism

(9) C1(q ⊥ q′) → C0(q)⊗ C1(q
′)⊕ C1(q)⊗ C0(q

′),

induced from the universal properties, are isomorphisms.

Proof. Locally, when L is trivial, these maps agree with their classical counterparts (cf. [Knu2,
IV Thm. 1.3.1]) and hence are isomorphisms. �

2. Total Witt groups and total classical invariants

In this section, we define the notion of total Witt groups and construct the total classical
cohomological invariants on these groups.

2.1. Total Witt groups. One must be careful when working with “total” Witt groups. Fix a
scheme X and denote by W (X,L ) the (quadratic) Witt group of regular L -valued quadratic
forms modulo metabolic forms on X. We usually write W (X) =W (X,OX). Every Witt class
can be represented by a regular quadratic form, see [Kneb2, §5].

We also fix a set P of line bundle representatives of the quotient group Pic(X)/2. With re-
spect to this choice, we define the total (quadratic) Witt group Wtot(X) =

⊕

L∈P W (X,L ).
While the abelian group Wtot(X) is only well defined up to non-canonical isomorphism de-
pending on our choice of P , the cohomological invariants we consider will not depend on such
choices. Definition 2.1 makes this precise.

Most importantly, we will not consider any ring structure onWtot(X) and thus will not need
to descend into the subtle considerations of [BC].

Definition 2.1. Fix an abelian group H and group homomorphisms eL : W (X,L ) → H for
each line bundle L . We say that the system {eL } is a system of projective similarity class
invariants if for any quadratic alignment A = (N , φ) between line bundles L and L ′, there
is a commutative diagram

W (X,L )

A	

��

eL // H

W (X,L ′)
e
L ′

// H

of abelian groups. One could axiomatize this notion using the language of morphisms of
functors, together with a compatibility condition with respect to quadratic alignments.

Given a system {eL } of projective similarity class invariants, the combined homomorphism

e = ⊕L∈P eL :Wtot(X) =
⊕

L∈PW (X,L ) → H

is well defined and independent of the choice P of representatives of Pic(X)/2. We call e the
total invariant associated to the system {eL } of projective similarity class invariants.
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A reader who is unhappy with this formalism may, for example, simply replace the statement
“e : Wtot(X) → H is surjective” by the equivalent statement “for each h ∈ H, there exists a
line bundle L and a class q ∈W (X,L ), such that eL (q) = h”.

2.2. Rank modulo 2. For each line bundle L , the rank modulo 2 defines a homomorphism
e0L :W (X,L ) → H0

ét(X,Z/2Z). Then {e0L } is a system of projective similarity class invariants
and there is a total rank modulo 2 homomorphism

e0 :Wtot(X) → H0
ét(X,Z/2Z).

Denote by I1(X,L ) ⊂ W (X,L ) the kernel of e0L and by I1tot(X) =
⊕

L∈P I
1(X,L ). Note

that if L is not a square in Pic(X) then I1(X,L ) =W (X,L ), cf. [Auel1, Lemma 1.6]. Thus
e0 has kernel I1tot(X).

2.3. Total discriminant. Recall from Proposition 1.2a that the center Z (E , q,L ) of the even
Clifford algebra C0(E , q,L ) of a regular quadratic form (E , q,L ) is an étale quadratic OX -
algebra. We call its X-algebra isomorphism class in H1

ét(X,Z/2Z) the discriminant invariant
d(E , q,L ).

Remark 2.2. If 2 is invertible on X and (E , q,L ) is a regular quadratic form of even rank n =
2m, then under the canonical homomorphism H1(X,Z/2Z) → H1(X,µ2), the discriminant
invariant d(E , q,L ) maps to the class of the signed discriminant module det E ⊗ (L ∨)⊗m

(defined in [PS2, §4]) of the associated symmetric bilinear form bq, cf. [Auel1, §1.9].

Proposition 2.3. Let (E , q,L ) and (E ′, q′,L ) be regular quadratic forms of even rank over
a scheme X. Then d(q ⊥ q′) = d(q) + d(q′) in H1

ét(X,Z/2Z).

Proof. We recall (cf. [Knu2, III Prop. 4.1.4]) that given étale quadratic OX -algebras Z and
Z ′, the addition of classes [Z ] and [Z ′] in H1

ét(X,Z/2Z) is represented by the quadratic étale
algebra Z ◦Z ′, defined to be the OX-subalgebra of Z ⊗Z ′ invariant under the diagonal Galois
action ι⊗ ι′, where ι and ι′ are the nontrivial OX-automorphisms of Z and Z ′, respectively.

Using Proposition 1.5b, we see that restricting the isomorphism (8) to the center yields an
OX-algebra morphism Z (q ⊥ q′) → Z (q) ⊗ Z (q′), which we claim factors through Z (q) ◦
Z (q′). Indeed, for any section v ⊗ v′ ⊗ f of E1 ⊗ E2 and z ⊗ z′ of Z (q)⊗Z (q′), we have that

(v⊗v′⊗f) (z⊗z′) = (v ·z)⊗(v′ ·z′)⊗f = (ι(z)∗v)⊗(ι′(z′)∗v′)⊗f = (ι⊗ ι′)(z⊗z′) (v⊗v′⊗f)

by Proposition 1.5b,c, where we suppress the canonical embeddings (3), (5) and the isomor-
phism (8). Hence (id − ι ⊗ ι′)Z (q ⊥ q′) annihilates E ⊗ E ′ ⊗ L ∨, hence is zero. This proves
the claim. The resulting OX-algebra morphism Z (q ⊥ q′) → Z (q) ◦ Z (q′) is Zariski locally
an isomorphism by [Knu2, IV §4.4], hence is an isomorphism. �

As a consequence, for each line bundle L , the discriminant invariant defines a homomor-
phism e1L : I1(X,L ) → H1

fppf(X,Z/2Z). By Proposition 1.2e, {e1L } is a system of projective
similarity class invariants and there is a total discriminant invariant homomorphism

e1 : I1tot(X) → H1
fppf(X,Z/2Z).

Denote by I2(X,L ) ⊂ I1(X,L ) the kernel of e1L and by I2tot(X) = ⊕L∈P I
2(X,L ). Then

I2tot(X) ⊂ ker(e1).

Remark 2.4. The quotient group ker(e1)/I2tot(X) is generated by elements of the form [E , q,L ]−
[E ′, q′,L ′], where both q and q′ have equal nontrivial discriminant invariant and yet L and
L ′ are in different square classes. This group will be the subject of future investigation.
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2.4. Total Clifford invariant. For a regular quadratic form (E , q,L ) of even rank n = 2m
and trivial discriminant on X, the even Clifford algebra decomposes as a product of Azumaya
OX-algebras C0(E , q,L ) ∼= C+

0 (E , q,L )× C−
0 (E , q,L ) upon fixing a splitting idempotent of

the center Z (E , q,L ) ∼= OX × OX .

Proposition 2.5. Let X be a scheme with 2 invertible and (E , q,L ) be a regular line bundle-
valued quadratic form of rank n = 2m and trivial discriminant. Then [C +

0 (E , q,L )] =
[C−

0 (E , q,L )] in 2Br(X).

Proof. For m odd, the involution τ0 is of unitary type with respect to the center (cf. [Auel1,
Prop. 3.11]), hence induces an isomorphism

(10) C+
0 (E , q,L ) ∼= C−

0 (E , q,L )op.

Hence it suffices to prove that [C±
0 (E , q,L )] are 2-torsion in Br(X). For this, we can appeal

to the étale cohomological Tits algebra construction of [Auel1, Thm. 3.17].
For m even, the involution τ0 is of the first kind and trivial on the center, restricting to

involutions τ±0 of the first kind on C±
0 (E , q,L ) (in particular, they have 2-torsion Brauer

classes). Thus, there exist refined classes [C ±
0 (E , q,L ), τ±0 ] in H2

ét(X,µ2) lifting the Brauer

classes [C ±
0 (E , q,L )] in 2Br(X) and satisfying

[C+
0 (E , q,L ), τ+0 ] + [C−

0 (E , q,L ), τ−0 ] = c1(L ,µ2),

see [Auel1, §2.8, §3.4], where c1(L ,µ2) ∈ H2
ét(X,µ2) is the 1st Chern class arising from the

coboundary map of the Kummer squaring sequence. In particular, we have [C+
0 (E , q,L )] =

[C−
0 (E , q,L )] in 2Br(X) since 1st Chern classes are in the kernel of the natural mapH2

ét(X,µ2) →
H2

ét(X,Gm). �

The statement of Proposition 2.5 (and hence of Theorem 2.6, below) should remain true
without the hypothesis that 2 is invertible on X. In the setting of Proposition 2.5, we will
write [C±

0 (q)] = [C±
0 (E , q,L )] for the Brauer class in question.

Theorem 2.6. Let X be a scheme with 2 invertible and (E , q,L ) and (E ′, q′,L ) be regular
line bundle-valued quadratic forms of even rank and trivial discriminant. Then [C±

0 (q ⊥ q′)] =
[C±

0 (q)] + [C±
0 (q′)] in 2Br(X).

Proof. Let e, f be complementary central splitting idempotents of C0(q), inducing an OX -
algebra decomposition

C0(q) = eC0(q)× fC0(q) = C+
0 (q)× C−

0 (q)

and a corresponding decomposition

C1(q) = C1(q) · e⊕ C1(q) · f = f · C1(q)⊕ e · C1(q) = C+
1 (q)⊕ C−

1 (q).

making C±
1 (q) into a C∓

0 (q)-C ±
0 (q)-bimodule via the C0(q)-bimodule structure on C1(q). Local

calculations, using Proposition 1.5b, shows that the map in Propositions 1.5c induces pairings

(11) C±
1 (q)× C∓

1 (q) → C∓
0 (q)⊗ L .

Similarly, C±
1 (q) annihilates itself via the map in Propositions 1.5c, C±

0 (q) and C∓
0 (q) annihilate

each other via the multiplication in C0(q), and the C±
0 (q)-C ∓

0 (q)-bimodule structure on C±
1 (q)

induces via the C0(q)-bimodule structure on C1(q), is zero.
Let e′, f ′ be complementary central splitting idempotents of C0(q

′), as above. Then e ⊗
e′ + f ⊗ f ′ and e⊗ f ′ + f ⊗ e′ (via the isomorphism (8)) are complementary central splitting
idempotents of C0(q ⊥ q′), inducing a decomposition

C0(q ⊥ q′) = (e⊗e′+f ⊗f ′)C0(q ⊥ q′)× (e⊗f ′+f ⊗e′)C0(q ⊥ q′) = C+
0 (q ⊥ q′)×C −

0 (q ⊥ q′).
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A direct local calculation, using the C∓
0 (q)-C ±

0 (q)-bimodule structure on C±
1 (q), the pairings

(11), and the annihilation statements above, establishes the following block matrix algebra
structures

C+
0 (q ⊥ q′) =

(

C+
0 (q)⊗ C+

0 (q′) C−
1 (q)⊗ C−

1 (q′)⊗ L ∨

C+
1 (q)⊗ C+

1 (q′)⊗ L ∨ C−
0 (q)⊗ C−

0 (q′)

)

C−
0 (q ⊥ q′) =

(

C+
0 (q)⊗ C−

0 (q′) C−
1 (q)⊗ C+

1 (q′)⊗ L ∨

C+
1 (q)⊗ C−

1 (q′)⊗ L ∨ C−
0 (q)⊗ C+

0 (q′)

)

via the isomorphism (8). The pairings (11) induce morphisms

C∓
1 (q) ∼= HomC±

0 (q)

(

C±
1 (q),C ±

0 (q)
)

⊗ L

of C±
0 (q)-C ∓

0 (q)-bimodules (these are right hom sheaves). Regularity implies that these are
isomorphisms, with respect to which we have OX-algebra isomorphisms

C+
0 (q ⊥ q′) = EndC +

0 (q)⊗C +
0 (q′)

(

C+
0 (q)⊗ C+

0 (q′)⊕ C+
1 (q)⊗ C+

1 (q′)⊗ L ∨
)

C−
0 (q ⊥ q′) = EndC +

0 (q)⊗C −

0 (q′)

(

C+
0 (q)⊗ C−

0 (q′)⊕ C+
1 (q)⊗ C−

1 (q′)⊗ L ∨
)

.

In particular, C+
0 (q ⊥ q′) is Brauer equivalent to C+

0 (q) ⊗ C+
0 (q′) and C−

0 (q ⊥ q′) is Brauer
equivalent to C+

0 (q)⊗ C−
0 (q′). An application of Proposition 2.5 finishes the proof. �

When 2 is invertible on X, then by Theorems 1.7 and 2.6, for each line bundle L on X,
the map [E , q,L ] 7→ [C +

0 (E , q,L )] for any choice of central splitting idempotent, defines a
homomorphism e2L : I2(X,L ) → 2Br(X). By Proposition 1.2e, {e2L } is a system of projective
similarity class invariants and there is a total Clifford invariant homomorphism

(12) e2 : I2tot(X) → 2Br(X).

Remark 2.7. The invariant e2OX
: I2(X) = I2(X,OX) → 2Br(X) coincides with the classical

Clifford invariant map. Indeed, if (E , q) is a regular OX-valued quadratic form of even rank
and trivial discriminant then C+

0 (E , q) is Brauer equivalent to the full Clifford algebra C (E , q).
See also [Auel1, Thm. 2.10b]. It was already proved in [KO] that the full Clifford algebra yields
a homomorphism W (X) → 2Br(X).

3. Surjectivity of the total Clifford invariant

The goal of this section is to prove Theorem A. Recall that an Azumaya algebra A over a
scheme X has OX -rank d

2 for a positive integer d called the degree. The period of A is the
order of the Brauer class [A ] ∈ Br(X). The index of A is the greatest common divisor of all
degrees of Azumaya algebras B such that A ⊗ End P ∼= B ⊗ End Q for vector bundles P
and Q on X. If X is integral with function field K, the generic index of A is the index of
the central simple K-algebra AK . The generic index divides the index, with equality if X is
regular of dimension ≤ 2. We will assume that 2 is invertible on X.

3.1. Exceptional isomorphisms. The exceptional isomorphisms of Dynkin diagrams A
2
1 =

D2 and A3 = D3 have beautiful reverberations in the theory of quadratic forms of rank 4 and
6, respectively. In these ranks, the reduced norm and reduced pfaffian constructions enable
a quadratic form to be reconstructed from its even Clifford algebra (together with certain
data). For quadratic forms over rings, this theory was initiated by Kneser, Knus, Ojanguren,
Parimala, Paques, and Sridharan, see [Knes], [KOS], [KP], [Knu1], [KPS1], [KPS2]. Now,
a standard reference on this work is Knus [Knu2, Ch. V]. Over fields, a wonderful reference
is [KMRT, IV §15]. Bichsel [Bic] and Bichsel–Knus [BK] provide an extension of this theory to
line bundle-valued forms over rings. The existing theory over rings immediately generalizes to
base schemes when the corresponding algebraic groups are of inner type (i.e., the case of trivial
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discriminant). For an approach over general bases using Severi–Brauer schemes, see [PS2]. In
the case of general discriminant, the details are worked out in [Auel1, §5].

We now outline the main results of this theory that we need. For even n = 2m, denote by
PQF+

n (X) the set of projective similarity classes of regular line bundle-valued quadratic forms
of rank n and trivial discriminant on X. Denote by 2Azd(X) the set of isomorphism classes of
Azumaya OX-algebras of degree d and period 2.

For ease of exposition, and without loss of generality, we can assume that X is connected.
The assignment, sending the projective similarity class of a quadratic form (E , q,L ) of even
rank n = 2m and trivial discriminant to the unordered pair consisting of the OX -algebra
isomorphism classes of the components C+

0 (E , q,L ) and C−
0 (E , q,L ) of the even Clifford

algebra (for some central splitting idempotent), yields a well defined map

(13) PQF+
n (X) → 2Az

(2)
2m−1(X)

where {−}(2) denotes the set of unordered pairs of elements.

For any odd k, denote by 2Az
′
2k(X) ⊂ 2Az

(2)

2k
(X) the subset of pairs of Brauer equivalent

Azumaya algebras. For any even k, denote by 2Az
′
2k(X) the set of equivalence classes of

Azumaya algebras of degree 2k and period 2 under the relation A ∼ B if A ∼= B or A ∼=

Bop. Then for even k, there is a canonical injective map 2Az
′
2k(X) → 2Az

(2)

2k
(X) given by

A 7→ (A ,A op).
For n ≡ 0 mod 4, recall that C+

0 (E , q,L ) is Brauer equivalent to C−(E , q,L ) by Propo-
sition 2.5. For n ≡ 2 mod 4, recall that C+

0 (E , q,L ) ∼= C−
0 (E , q,L )op by (10). Hence (13)

factors through a map

(14) C±
0 : PQF+

n (X) → 2Az
′
2m−1(X).

The main result is that for n = 4 and n = 6, the map (14) is a bijection, with inverse map
realized, respectively, by the reduced norm and pfaffian construction outlined in [KPS2], [Knu2,
V.4–5], [PS2]. We now proceed to summarize these constructions.

Reduced norm form. In the n = 4 case, given a pair of Brauer equivalent Azumaya quaternion
algebras A and B, fibered Morita theory (cf. Lieblich [Lie1, §2.1.4] or Kashiwara–Schapira
[KS, §19.5]) provides a A -B-bimodule P, which is invertible over A and B and is unique up
to tensoring by a line bundle. Descending the reduced norm via étale splittings of A and B,
there exists a reduced norm form N (P) = (P, qP ,NP), consisting of line bundle NP and
a regular quadratic form qP : P → NP satisfying qP(a · p · b) = NrdA (a) qP(p)NrdB(b) for
sections a of A , b of B, and p of P, where NrdA : A → OX is the classical reduced norm.
Tensoring P by a line bundle induces a projective similarity of reduced norm forms. Also, P
is a B-A -bimodule by composing each action with the standard involution, giving rise to the
same reduced norm form, hence we can freely exchange the role of A and B.

Reduced pfaffian form. In the n = 6 case, given an Azumaya algebra A of degree 4 and period
2, there exists a vector bundle P of rank 16, unique up to tensoring by a line bundle, and
an OX-algebra isomorphism ϕ : A ⊗ A ∼= End(P). The reduced trace, considered as an
element of End A ∼= A op ⊗ A , is mapped via ϕ to an involutory OX -module endomorphism
ψ : P → P. The subsheaf Aψ(P) = im(idP − ψ) of alternating elements with respect to ψ
is a vector bundle of rank 6, as can be checked étale locally. Descending the pfaffian map via
étale splitting of A and P, there exists a reduced pfaffian form Pf (P) = (Aψ(P),pfP ,PfP),
consisting of a line bundle PfP and a regular quadratic form pfP : Aψ(P) → PfP . Tensoring
P by a line bundle tensors Aψ(P) by the square of the line bundle, inducing a projective
similarity of reduced pfaffian forms. Exchanging A with A op replaces P by P∨ and ψ
by ψ∨, giving rise to isomorphisms Aψ∨(P∨) ∼= Aψ(P)∨ and PfP∨

∼= (PfP )∨ (cf. [Knu2,
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III Lemma 9.3.5]) and a projective similarity of reduced pfaffian forms Pf (P) and Pf (P∨)
(cf. [Knu2, III Prop. 9.4.2]).

Theorem 3.1. Let X be a scheme with 2 invertible.

a) There are inverse bijections

PQF+
4 (X)

C ±

0 //
2Az

′
2(X)

N
oo

where N is the reduced norm form construction.
b) There are inverse bijections

PQF±
6 (X)

C +
0 //

2Az
′
4(X)

Pf
oo

where Pf is the reduced pfaffian form construction.

Proof. Given Brauer equivalent Azumaya algebras A and B, there exists an invertible A -
B-bimodule P such that B ∼= EndA (P). Hence for m even (e.g., m = 2), 2Az

′
2m−1(X) is

in bijection with the set of isomorphism classes of pairs (A ,P), consisting of an Azumaya
algebra A of degree n and an invertible right A -module P. A direct proof of a can be deduced
from [PS2, Prop. 4.1] (itself a generalization of [BK, Prop. 4.5]), which states that if A is an
Azumaya quaternion algebra and P is an invertible right A -module, then C0(N (P)) ∼=
A × EndA (P). By [PS2, Prop. 4.3], the map N is surjective. Hence N and C±

0 are inverse
bijections. This is a generalization of [KPS2, Thm. 10.7] to the line bundle-valued (trivial
discriminant) setting.

A direct proof of b can be given along similar lines. By [BK, Prop. 4.8] (which immediately
generalizes to general base schemes), if A is an Azumaya OX-algebra of degree 4, P is a
locally free OX -module of rank 16, and ϕ : A ⊗ A → End(P) is an OX-algebra isomorphism
(corresponding to the element [A ] ∈ 2Az

′
4(X)), then C0(Pf (P)) ∼= A op × EndA op(P). By

[PS2, Prop. 6.1], the map Pf is surjective. Hence Pf and C±
0 are inverse maps. This is a

generalization of [KPS2, Thm. 9.4] to the line bundle-valued (trivial discriminant) setting. �

As a result, we can realize any Azumaya algebra of degree dividing 4 on X as the even
Clifford invariant of a line bundle-valued quadratic form. In particular, if 2Br(X) is generated
by such Azumaya algebras, then the total Clifford invariant is surjective.

Corollary 3.2. Let X be a scheme with 2 invertible. If 2Br(X) is generated by Azumaya
algebras of degree ≤ 4, then the total Clifford invariant

e2 : I2tot(X) → 2Br(X)

is surjective.

Note that if X is the spectrum of a field, then 2Br(X) is always generated by quaternion
algebras by Merkurjev’s theorem, hence the hypotheses of Corollary 3.2 are quite global in
nature.

In the same spirit, we can give a stronger condition sufficient for the surjectivity of the
classical Clifford invariant e2OX

: I2(X) → 2Br(X). First we recall some results from [KPS2].

Let [A ] ∈ 2Az4(X) have reduced pfaffian form (Aψ(P),pfP ,PfP), choosing a vector bundle
P of rank 16 such that A ⊗ A ∼= End P. The class d0(A ) = [PfP ] ∈ Pic(X)/2 is a well
defined invariant of A , see [KPS2, §9, p. 213]. When d0(A ) is trivial we say that A has trivial
pfaffian invariant.

Proposition 3.3 ([KPS2, Prop. 3.2]). Let X be a scheme with 2 invertible and A ∈ 2Az4(X).
If A has an involution of the first kind then d0(A ) is 2-torsion. Moreover, if A has a sym-
plectic involution then d0(A ) is trivial.
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We recall that any Azumaya quaternion algebra has a standard symplectic involution, hence
has trivial pfaffian invariant.

Corollary 3.4. Let X be a scheme with 2 invertible. If 2Br(X) is generated by Azumaya
algebras of degree dividing 4 with trivial pfaffian invariant, then the classical Clifford invariant

e2OX
: I2(X) → 2Br(X)

is surjective. In particular this is the case if 2Br(X) is generated by Azumaya quaternion
algebras.

Proof. We first remark that any A ∈ 2Az4(X) of index 2 is Brauer equivalent to A ′ ∈ 2Az4(X)
with trivial pfaffian invariant. Indeed, if A has index 2, then A ∼= EndB(P) for an Azumaya
quaternion algebra B and a locally free B-module P of rank 2. We can extend the standard
symplectic involution on B to A ′ = M 2(B), which then has trivial pfaffian invariant by
Proposition 3.3. But A is Brauer equivalent to A ′.

Now, note that the reduced norm form qB : B → OX is a regular OX-valued quadratic
form in I2(X) with e2OX

(N (B)) = [B], by Theorem 3.1a. This already proves the final claim.

In general, if A ∈ 2Az4(X) has trivial pfaffian invariant, then there exists an OX -valued
quadratic form (E , q) in the projective similarity class of Pf (A ). By Theorem 3.1b, we have
that e2OX

(E , q) = [A ]. The first claim follows. �

3.2. Brauer dimension results. Now we investigate sufficient conditions under which 2Br(X)
is generated by Azumaya algebras of degree dividing 4. Let X be an integral scheme with func-
tion field K. An Azumaya OX-algebra A is called an Azumaya division algebra if the generic
fiber AK is a central division K-algebra.

We introduce two conditions on an integral scheme X with function field K:

A Every central division K-algebra of period 2 and degree dividing 4, which is Brauer
equivalent to the generic fiber of an Azumaya OX -algebra, is isomorphic to the generic
fiber of an Azumaya division OX-algebra, i.e., restriction to the generic point 2Azd(X) →

2Azd(K) is surjective for d dividing 4.

B Every A ∈ 2Br(X) satisfies index(AK) |period(AK)2, i.e., index(AK) | 4.

Condition A is a kind of “purity for division algebras” of period 2 and degree dividing 4,
or “purity for GL4/µ2-torsors” in the setting of Colliot-Thélène–Sansuc [CTS2]. Condition B
might be restated loosely as “X has Brauer dimension 2” for classes of period 2. See [ABGV,
§4] for the precise notion of Brauer dimension.

We now prove that under conditions A and B, we get an “unramified symbol length” bound
on the Brauer group, which is stronger than the generation hypothesis needed for Corollary 3.2.

Theorem 3.5. Let X be a regular integral scheme with 2 invertible. If X satisfies conditions
A and B, then 2Br(X) is represented by Azumaya algebras of degree dividing 4. In particular,
the total Clifford invariant is surjective.

Proof. Since X is regular, the canonical map Br(X) → Br(K) is injective, see [AG] or [Gro,
Cor. 1.8]. By condition B, for any A ∈ 2Br(X), we have that AK ∈ 2Br(K) is Brauer
equivalent to a central division K-algebra D of degree dividing 4. By condition A, there exists
an Azumaya OX-algebra B whose generic fiber is D, in particular, B has degree dividing 4.
Since [BK ] = [D] = [AK ] ∈ 2Br(K), by the injectivity of Br(X) → Br(K), we have that
[B] = [A ] ∈ 2Br(X). The final claim is thus a direct consequence of Corollary 3.2. �

We now collect together some necessary conditions under which conditions A and B hold.
Condition A (and more generally, purity for division algebras of any degree) is satisfied quite
generally for schemes of dimension ≤ 2.

Theorem 3.6. Any regular integral scheme X of dimension ≤ 2 satisfies condition A.
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Proof. Apply Colliot-Thélène–Sansuc [CTS2, Cor. 6.14] to the reductive group scheme GL4/µ2
over X. An alternate proof can be found in [APS, Thm. 4.3]. �

Note that for schemes of higher dimension, Condition A can fail, see [AW3]
As for condition B, it holds in the following cases where the Brauer dimension of K is known

to be 1:

• smooth curves over finite fields (by class field theory),
• smooth surfaces over algebraically closed fields (by Artin [Art] or de Jong [dJ]),

and where the Brauer dimension of K is known to be 2:

• smooth curves over local fields (by Saltman [Sal2]),
• smooth surfaces over (pseudo-)finite fields (by Lieblich [Lie2]).

We can now proceed to prove Theorem A.

Corollary 3.7. Let X be regular integral scheme with 2 invertible.

a) If X is a smooth curve over a finite field or surface over an algebraically closed field,
then the classical Clifford invariant e2 : I2(X) → 2Br(X) is surjective.

b) If X is a smooth curve over a local field or a surface over a (pseudo-)finite field, then
the total Clifford invariant e2 : I2tot(X) → 2Br(X) is surjective.

Proof. This is a direct consequence of Corollaries 3.2 and 3.4, Theorem 3.5, Theorem 3.6, and
the Brauer dimension results stated above. Note that a was already known for curves over
finite fields by [PS1, Lemma 4.1] and for surfaces over algebraically closed fields by [FC]. �

We remark that recent results of Lieblich–Parimala–Suresh [LPS] imply that, assuming a
conjecture of Colliot-Thélène on the Brauer–Manin obstruction to the existence of 0-cycles
of degree 1 on smooth projective varieties over global fields, condition B also holds for regu-
lar arithmetic surfaces, i.e., regular schemes proper and flat over the spectrum of the ring of
integers of a number field whose generic fiber is a geometrically connected curve. Thus The-
orem A holds conditionally for regular arithmetic surfaces. Also, recent results of Harbater–
Hartmann–Krashen [HHK14] prove condition B for a wide class of local curves over complete
discrete valuation rings with finite or algebraically closed residue fields.

3.3. A total unramified Milnor question. We are lead to the following natural question,
inspired by our main result.

Question 3.8. Let X be a regular integral scheme with 2 invertible. Assume that the function
field K of X satisfies cd2(K) ≤ 3. Is the homomorphism

e2 : I2tot(X) → 2Br(X)

surjective?

A positive answer to Question 3.8 brings a scheme closer to having a positive answer to an
analogue of the unramified Milnor question for the fundamental filtration I2tot(X) ⊂ I1tot(X) ⊂
Wtot(X) of the total Witt group; see [Auel3, Question 3.1] for a survey of results on the
unramified Milnor question. All schemes appearing in Corollary 3.7 have a positive answer to
Question 3.8.

There are recent examples of Antieau–Williams [AW2, §7], [AW1, Example 3.13] of smooth
affine schemes over C of dimension 5 with nonsurjective total Clifford invariant (these examples
actually have nonsurjective classical Clifford invariant and trivial Picard group).
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du Bois Marie 1962/64 (SGA 3), vol. 151, 152, 153, Springer-Verlag, New York, 1970.
[dJ] A. J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J.

123 (2004), no. 1, 71–94.
[EKM] R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of quadratic forms,

American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society,
Providence, RI, 2008.

[EVMS] P. Elbaz-Vincent and S. Müller-Stach, Milnor K-theory of rings, higher Chow groups and applications,
Invent. Math. 148 (2002), no. 1, 177–206.

[FC] F. Fernández-Carmena, On the injectivity of the map of the Witt group of a scheme into the Witt

group of its function field, Math. Ann. 277 (1987), no. 3, 453–468.
[GHKS] W.-D. Geyer, G. Harder, M. Knebusch, and W. Scharlau, Ein Residuensatz für symmetrische Bilin-

earformen, Invent. Math. 11 (1970), 319–328.
[Gil] S. Gille, A graded Gersten-Witt complex for schemes with a dualizing complex and the Chow group,

J. Pure Appl. Algebra 208 (2007), no. 2, 391–419.
[Gro] A. Grothendieck, Le groupe de Brauer. II. Théorie cohomologique, Dix Exposés sur la Cohomologie
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